yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Solving equations by completing the square | High School Math | Khan Academy


4m read
·Nov 11, 2024

So let's see if we can solve this quadratic equation right over here: (x^2 - 2x - 8 = 0).

And actually, they're cutting down some trees outside, so my apologies if you hear some chopping of trees. Well, I'll try to ignore it myself.

All right, so back, back, back to the problem at hand. There's actually several ways that you could attack this problem. You could just try to factor the left-hand side and go that way, but the way we're going to tackle it is by completing the square.

And what does that mean? Well, that means that I want to write the left-hand side of this equation in the form ((x + A)^2 + B). As we'll see, if we can write the left-hand side in this form, then we can actually solve it in a pretty straightforward way.

So let's see if we could do that. Well, let's just remind ourselves how we need to rearrange the left-hand side in order to get it to this form. If I were to expand out ((x + a)^2), let me do that in a different color.

So, if I were to expand out ((x + a)^2), that is (x^2 + 2ax + a^2) — make sure that plus sign, you can see it: plus (2ax) plus (a^2), and of course, you still have that plus (B) there.

So let's see if we can write this in that form. What I'm going to do — and this is what you typically do when you try to complete the square — I'll write (x^2 - 2x), now I'm going to have a little bit of a gap.

And I'm going to have (-8), and I have another little bit of a gap, and I'm going to say equals (0). So I just rewrote this equation, but I gave myself some space so I can add or subtract some things that might make it a little bit easier to get into this form.

So if we just match our terms (x^2), (x^2), (2ax) equals (-2x). So if this is (2ax), that means that (2a = -2). So (a = -1).

Another way to think about it, your (a) is going to be half of your first-degree coefficient, or the coefficient on the (x) term. So the coefficient on the (x) term is (-2); half of that is (-1).

And then we want to have (a^2), so if (a) is (-1), (a^2) would be (+1). So let's throw a plus one there. But like we've said before, we can't just willy-nilly add something on one side of the equation without adding it to the other or without subtracting it again on that same side; otherwise, you're fundamentally changing the truth of the equation.

So if I add one on the left side, I either have to add one on the right side to make the equation still hold true, or I could add one and subtract one from the left-hand side. So I'm not really changing the value of the left-hand side; all I've done is added one and subtracted one from the left-hand side.

Now, why did I do this again? Well, now I've been able — I haven't changed its value — I just added and subtracted the same thing. But this part of the left-hand side now matches this pattern right over here: (x^2 + 2ax) where (a) is (-1).

So it's (x^2 - 2x + 1^2), and then this part right over here is the plus (B). So we already know that (B = -8 + 1 = -7), and so that's going to be our (B) right over there.

We can rewrite this as what I squared off in green: that's going to be ((x - 1)^2 - 9 = 0). Then I can add (9) to both sides.

So I just have this squared expression on the left-hand side. So let's do that; let me add (9) to both sides. And what I'm going to be left with — so let me just, on the left-hand side, those cancel out; that's why I added the (9) — I'm just going to be left with ((x - 1)^2 = 9).

So if ((x - 1)^2 = 9), that means that that something is either going to be the positive or the negative square root of (9).

So it's either going to be (x - 1 = 3) or (x - 1 = -3). And you could see that here: if (x - 1 = 3), (3^2 = 9). If (x - 1 = -3), then ((-3)^2 = 9).

So here we can just add (1) to both sides of these equations. Add (1) to both sides of this equation, and you get (x = 4) or (x = -2).

So, (x) could be equal to (4) or (x) could be equal to (-2), and we're done.

Now, some of you might be saying, "Well, why did we go through the trouble of completing the square? I might have been able to just factor this and then solve it that way."

And you could have actually; for this particular problem, completing the square is very powerful because you can actually always apply this. In the future, you will learn the quadratic formula, and the quadratic formula actually comes directly out of completing the square.

In fact, when you're applying the quadratic formula, you're essentially applying the result of completing the square.

So hopefully you found that fun!

More Articles

View All
Why plan for retirement | Investments and retirement | Financial Literacy | Khan Academy
So let’s think a little bit about retirement. I know some of y’all who are younger are like, “Hey, I’m just trying to figure out what to do with my own life. Why am I already thinking about my life when I am in my 60s or 70s or even later?” The first thi…
1994 Berkshire Hathaway Annual Meeting (Full Version)
Put this over here, right? Am I live yet? Yeah. Morning! We were a little worried today because we weren’t sure from the reservations whether we could handle everybody. But it looks to me like there may be a couple of seats left up there. However, I thin…
Spinning
Hey, Vsauce. Michael here. Do you want my head delivered to your door in a box? Well, too bad! I only have one head and I already called dibs on it. Plus, my neck is like pure muscle; this head ain’t never coming off! The next best thing is what actuall…
Interpreting graphs of proportional relationships | 7th grade | Khan Academy
[Instructor] We are told the proportional relationship between the number of hours a business operates and its total cost of electricity is shown in the following graph. All right. Which statements about the graph are true? Choose all answers that apply. …
A Baffling Balloon Behavior - Smarter Every Day 113
Hey, it’s me, Destin. Welcome back to Smarter Every Day. So today we’re in the rocket van, and I’ve got two little science helpers here, right? Kids: Yes, right. Are you wearing your seatbelts? Kids: Yes. OK, we’re gonna do something pretty interesti…
Definite integral of piecewise function | AP Calculus AB | Khan Academy
So we have an f of x right over here, and it’s defined piecewise. For x less than zero, f of x is x plus one. For x greater than or equal to zero, f of x is cosine of pi x. We want to evaluate the definite integral from negative one to one of f of x dx. …