yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why are so many objects in space shaped like discs? | Michelle Thaller | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

MICHELLE THALLER: Rick, you have noticed one of the most wonderful and consistent patterns in the whole universe. The universe is very good at making spinning disks. Our solar system is a disk, and all the planets go around in basically the same plane, and they all go around in the same direction. Why should that be? There are disks all over the place. I mean, think about the rings of Saturn. The rings of Saturn are also very, very thin, and they all go around in the same direction. Galaxies, spiral galaxies are one big disk with everything moving around a common center.

Disks seem to be something that the universe likes to make. And, in fact, that really is true. And it has to do with a number of things. It has to do with the force of gravity and something called the conservation of angular momentum. Now, gravity is very good at bringing stuff together and bringing it together so it becomes denser and denser and begins to fall into the center.

Our solar system formed out of a giant cloud of dust and gas about 4 and 1/2 billion years ago. It was actually many trillions of miles across at first, but it had to get much smaller in order for the densities to get high enough and the temperatures also to get warm enough inside to give birth to the Sun, actually ignite a star. So you have this collapsing cloud of dust. OK, well, you can sort of understand that gravity wants to bring all that together, but why does it start to spin up?

There's something called the conservation of angular momentum. And that basically says that if anything has any spin at all, even just a little bit of motion, as gravity brings it together and makes it smaller, that spin is accelerated. It's sped up. And probably the example most people know best of all—you can actually feel this if you want to do this—but an ice skater. If you've seen an ice skater do a spin, usually what they do is that they have their arms outstretched, and they're spinning around relatively slowly.

And then they bring their arms in, and they spin faster and faster. It's kind of amazing that any person can keep their balance when they do that. That is an application of the conservation of angular momentum. You have an extended body, your arms are out, and you're spinning slowly. In order to conserve the energy in that spin, as that body becomes smaller, the spin goes faster and faster.

And so what happens in these clouds is that a cloud usually has just a tiny little bit of a drift velocity. It's going around the galaxy or maybe a nearby star exploded, and it's kind of all moving in one direction. The cloud itself has a little bit of velocity as a cloud, as a whole. Particles inside that cloud could be going any which way. But as the cloud begins to come together under gravity, any little bit of spin gets accelerated, actually becomes faster.

And so as the cloud collapses, any little directional drift becomes a spin, and the cloud itself begins to spin around. OK, so that gets you a spinning cloud. Why does it collapse down into a disk? And this is an interesting bit of physics that has to do with things like collisions. In the case of a very large cloud that's forming a star, it might not even be that things are colliding directly, but gravitationally they're influencing them as you go by.

As you go by different parts of mass, they tug on each other with their gravity. So this whole cloud is spinning, and things begin to interact gravitationally. They begin to collide with each other. The particles have motion in every direction. Some are going up, and some are going down. And as they start to hit each other, that's kind of balanced out. It's that up and down is sort of canceled out, but everything has the same motion as the cloud is spinning.

So that's basically the only thing that's left over at the end. Everything gets canceled out as all these things collide and interact, but the spin of the cloud is still there. And so over time, you collapse down into a disk. So the only reason you make disks is because of this law of conservation of angular momentum, and the...

More Articles

View All
Estimating multi-digit addition and subtraction word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told Minley has 158,159 flight points. About how many total flight points does Minley have now? So why don’t you pause this video and have a go at it? And remember, they don’t want you to figure out the exact number; they just say about how many. So…
2017 AP Calculus AB/BC 4c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let’s now tackle part C, which tells us that for T is less than 10, an alternate model for the internal temperature of the potato at time T minutes is the function G that satisfies the differential equation: The derivative of G with respect to T is equal…
The fastest way to ruin your entire life
Here’s another quick tutorial on how to ruin the rest of your life. Step one: Close your body language. Go throughout life with a closed body language. Slouch your shoulders, keep your head down, don’t make eye contact. Don’t give anybody the impression …
The 5 BEST Credit Cards For Beginners in 2021
What’s up you guys, it’s Graham here! So welcome to the year of 2021, where YouTubers like myself can finally make videos with 2021 in the title. But here on the channel, it’s become kind of like an annual tradition to break down the best credit cards for…
Joan Lasenby on Applications of Geometric Algebra in Engineering
So Joan, as we walk through geometric algebra, I think the best place to start might be through a more tangible example. You’re doing a project with drones here at Cambridge; can you explain that first? Yes, so we’re doing a project with drones. This is …
What Would You Do If Money Didn’t Matter? | Short Film Showcase
What do you desire? What makes you itch? What sort of a situation would you like? Let’s suppose I do this often in vocational guidance of students. They come to me and say, “Well, we’re getting out of college and