yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to t statistics | Confidence intervals | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

We have already seen a situation multiple times where there is some parameter associated with the population. Maybe it's the proportion of a population that supports a candidate; maybe it's the mean of a population, the mean height of all the people in the city.

We've determined that it's unpractical or we just—there's no way for us to know the true population parameter. But we could try to estimate it by taking a sample size. So, we take n samples and then we calculate a statistic based on that.

We've also seen that not only can we calculate the statistic, which is trying to estimate this parameter, but we can construct a confidence interval about that statistic based on some confidence level. That confidence interval would look something like this: it would be the value of the statistic that we have just calculated plus or minus some margin of error.

We’ll often say this critical value, z, and this will be based on the number of standard deviations we want to go above and below that statistic. Then, we'll multiply that times the standard deviation of the sampling distribution for that statistic.

Now, what we'll see is we often don't know this. To know this, you oftentimes even need to know this parameter. For example, in the situation where the parameter that we're trying to estimate and construct confidence intervals for is, say, the population proportion—what percentage of the population supports a certain candidate?

Well, in that world the statistic is the sample proportion. So, we would have the sample proportion plus or minus z star times—well, we can't calculate this unless we know the population proportion. So instead, we estimate this with the standard error of the statistic, which in this case is p hat times 1 minus p hat, the sample proportion times 1 minus the sample proportion over our sample size.

If the parameter we're trying to estimate is the population mean, then our statistic is going to be the sample mean. So in that scenario, we are going to be looking at our statistic; our sample mean plus or minus z star. Now, if we knew the standard deviation of this population, we would know what the standard deviation of the sampling distribution of our statistic is. It would be equal to the standard deviation of our population times the square root of our sample size.

But we often will not know this. In fact, it's very unusual to know this. So sometimes you will say, "Okay, if we don't know this, let's just figure out the sample standard deviation of our sample." Here, instead we'll say, "Okay, let's take our sample mean plus or minus z star times the sample standard deviation of our sample, which we can calculate divided by the square root of n."

Now, this might seem pretty good if we're trying to construct a confidence interval for our sample for our mean, but it turns out that this is not so good. Because it turns out that this right over here is going to actually underestimate the actual interval, the true margin of error you need for your confidence level.

And so that's why statisticians have invented another statistic. Instead of using z, they call it t. Instead of using a z table, they use a t table, and we're going to see this in future videos.

So if you are actually trying to construct a confidence interval for a sample mean, and you don't know the true standard deviation of your population—which is normally the case—instead of doing this, what we're going to do is we're going to take our sample mean plus or minus our critical value. We'll call that t star times our sample standard deviation, which we can calculate divided by the square root of n.

So the real functional difference is that this actually is going to give us the confidence interval that actually has the level of confidence that we want. If we have 195 percent level of confidence, if we keep computing this over and over again for multiple samples, that roughly 95 percent of the time this interval will contain our true population mean.

To functionally do it—and we'll do it in future videos—you really just have to look up a t table instead of a z table.

More Articles

View All
a productive day in the life vlog
Hi guys, it’s me, Ruri. So yeah, I just woke up. I head to the bathroom, I took a very cold shower, and now I’m doing my skincare routine. After doing my skincare, I’ll make myself some coffee and start studying. Peace. Oh, why does my hair look this weir…
Good Explanations Are Acts of Creativity
There’s a phrase that you’re going to hear both Brett and I use over and over again, and that phrase is good explanations. Good explanations is Deutsche’s improvement upon the scientific method. At the same time, it’s beyond science. It’s not just true in…
Understanding economic growth | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about economic growth. I want to be very careful here because, depending on the context, people, including economists, might mean different things by economic growth. In everyday language, when people are talking about …
The Fermi Paradox II — Solutions and Ideas – Where Are All The Aliens?
There are probably 10,000 stars for every grain of sand on Earth, in the observable universe. We know that there might be trillions of planets. So where are all the aliens? This is the Fermi Paradox. If you want to know more about it, watch part one. Here…
Once You’re Rich Do This for Your Parents (Cheap to Expensive)
Did you know that by the time you’ve reached 19 years old, you would have already spent 95% of the time you’ll get with your parents in your lifetime? It doesn’t sound right, but it is true. You get your own life, your own family, your work, your passions…
Cooling down water by BOILING it
Let’s cool down some water by boiling it. The water in this beaker is hot, but it’s not boiling because the molecules in the beaker don’t have enough kinetic energy right now to rapidly fight against the air pressure from the outside that’s squeezing them…