yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to t statistics | Confidence intervals | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

We have already seen a situation multiple times where there is some parameter associated with the population. Maybe it's the proportion of a population that supports a candidate; maybe it's the mean of a population, the mean height of all the people in the city.

We've determined that it's unpractical or we just—there's no way for us to know the true population parameter. But we could try to estimate it by taking a sample size. So, we take n samples and then we calculate a statistic based on that.

We've also seen that not only can we calculate the statistic, which is trying to estimate this parameter, but we can construct a confidence interval about that statistic based on some confidence level. That confidence interval would look something like this: it would be the value of the statistic that we have just calculated plus or minus some margin of error.

We’ll often say this critical value, z, and this will be based on the number of standard deviations we want to go above and below that statistic. Then, we'll multiply that times the standard deviation of the sampling distribution for that statistic.

Now, what we'll see is we often don't know this. To know this, you oftentimes even need to know this parameter. For example, in the situation where the parameter that we're trying to estimate and construct confidence intervals for is, say, the population proportion—what percentage of the population supports a certain candidate?

Well, in that world the statistic is the sample proportion. So, we would have the sample proportion plus or minus z star times—well, we can't calculate this unless we know the population proportion. So instead, we estimate this with the standard error of the statistic, which in this case is p hat times 1 minus p hat, the sample proportion times 1 minus the sample proportion over our sample size.

If the parameter we're trying to estimate is the population mean, then our statistic is going to be the sample mean. So in that scenario, we are going to be looking at our statistic; our sample mean plus or minus z star. Now, if we knew the standard deviation of this population, we would know what the standard deviation of the sampling distribution of our statistic is. It would be equal to the standard deviation of our population times the square root of our sample size.

But we often will not know this. In fact, it's very unusual to know this. So sometimes you will say, "Okay, if we don't know this, let's just figure out the sample standard deviation of our sample." Here, instead we'll say, "Okay, let's take our sample mean plus or minus z star times the sample standard deviation of our sample, which we can calculate divided by the square root of n."

Now, this might seem pretty good if we're trying to construct a confidence interval for our sample for our mean, but it turns out that this is not so good. Because it turns out that this right over here is going to actually underestimate the actual interval, the true margin of error you need for your confidence level.

And so that's why statisticians have invented another statistic. Instead of using z, they call it t. Instead of using a z table, they use a t table, and we're going to see this in future videos.

So if you are actually trying to construct a confidence interval for a sample mean, and you don't know the true standard deviation of your population—which is normally the case—instead of doing this, what we're going to do is we're going to take our sample mean plus or minus our critical value. We'll call that t star times our sample standard deviation, which we can calculate divided by the square root of n.

So the real functional difference is that this actually is going to give us the confidence interval that actually has the level of confidence that we want. If we have 195 percent level of confidence, if we keep computing this over and over again for multiple samples, that roughly 95 percent of the time this interval will contain our true population mean.

To functionally do it—and we'll do it in future videos—you really just have to look up a t table instead of a z table.

More Articles

View All
General multiplication rule example: independent events | Probability & combinatorics
We’re told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spins a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first…
How to Make the Maximum Amount of Money Possible
So if you want to make the maximum amount of money possible, like, if you just, if you just want to get rich over your life, and you want to do it in a deterministic, predictable way, what you would do is you would basically stay on the bleeding edge of t…
Using matrices to transform a 4D vector | Matrices | Precalculus | Khan Academy
We’ve already thought a lot about two by two transformation matrices as being able to map any point in the coordinate plane to any other point or any two-dimensional vector to any other two-dimensional vector. What we’re going to do in this video is gener…
The Most Radioactive Places on Earth
[Music] So I’m not B H. It’s overloaded; radiation is frightening, at least certain types of it are. I mean, my Geiger counter doesn’t go off near my mobile phone or the Wi-Fi router or my microwave. That’s because a Geiger counter only measures ionizing …
The future of YouTube: Is it slowly getting worse and becoming too “Advertiser Friendly?”
What’s up, you guys? It’s Graham here. So this video is gonna be entirely different from anything else I’ve ever uploaded. It’s not about real estate, it’s not about money, it’s not about mindset. I’m talking about YouTube today and why they’re going thro…
How To Become A Millionaire | Shark Tank's Kevin O'Leary
Hello Mr. Wonderful, I have two questions for you today. Number one is about you. Did you ever see yourself being a multi-millionaire or being on a TV show? Going through high school, college, let’s hear from Joseph. Number two is about day trading. I’m…