yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Magical metals, how shape memory alloys work - Ainissa Ramirez


3m read
·Nov 9, 2024

Today we're talking about weird materials that we use in space, in robots and in your mouth. I'm talking about shape memory alloys. Like the name says, these are metals that remember different shapes.

To understand how these metals work, we've got to talk about atoms and organizing. Let's talk about atoms first. Atoms are tiny bits of matter that you cannot see with your eye, yet they make up everything in our world, from the chair that you're sitting on to your cell phone. Atoms have some surprising ways of behaving too. We'll talk about that shortly.

Now, how big is an atom? Well, imagine pulling one of your hairs out of your head and whittling it like a stick 100,000 times. One of those shavings would be the width of an atom. They're that small.

Now let's talk about atoms and organizing. You may not know this, but atoms arrange themselves similar to the way we humans arrange ourselves. Sometimes they sit in rows, like we do on a bus or an airplane. We call that seating arrangement a phase. Other times they sit diagonal from each other, sort of like seats in a movie theater or sports stadium. This is another phase.

When atoms move from one seating to another, this is called a phase change. Phase changes are all around us. You may already know about water's phases: solid, liquid, and gas. Many other materials have phases like that too. Some of them have several solid phases.

OK. Back to those shape memory alloys we mentioned before. When we say that the metals remember their different shapes, what we're really saying is they remember different seating arrangements of atoms. When the atoms rearrange, the metal moves from one shape to another.

Let's look at a phase change in action. Here I have a metal wire that is made out of nickel and titanium. This metal wire is a shape memory alloy, and I'm going to make it switch between its different shapes using heat from a lighter. Watch this. I'm going to wrap this wire around my finger and then heat it. Amazing! That wire returns to a straight line when I heat it.

Let's try that again. I'm going to wrap it around my finger, and heat it. Yep, that's still amazing. Not only is it amazing, this is weird, because metals generally don't do that.

Here's a paper clip. When I heat it, I get nothing. What we're seeing is the shape memory wire changing phases when it gets hot. When the wire is cold, atoms are in a diagonal arrangement, like the movie theater seating we talked about before. We call this a monoclinic arrangement, and scientists will call this phase martensite.

When I heated up the wire, the atoms moved into columns like airplane seating. This is a cubic arrangement. Scientists will call this phase austenite. So when we added the heat, the atoms shifted positions seamlessly, and they'll do this forever. They have this coordinated motion, just like members of a tireless marching band. Each makes a small shift, but all together those small shifts create a totally different pattern.

So that's pretty cool, but where do we use these materials? Well, if you look in the sky tonight, shape memory alloys are at work - on Mars. They're used to move panels on the Mars rover so that it can study the environment. Like our metal straightened when it was heated, the metals holding the panels will move when electrically heated.

When we stop heating the shape memory metal, the panel will return back due to an opposing spring. Back on Earth, shape memory alloys are used to open up clogged arteries as stents, which are small collapsible springs that force open passages. Shape memory alloys are also used to move robots, toy butterflies, teeth in braces, and for a perfect fit every time, shape memory wires are used as underwires in bras.

Now you know Victoria's secret. By popping a bra into the dryer, it'll be brand new every time. So whether it's on Mars or in your mouth, small atomic movements can create huge changes, and understanding the way atoms behave allows us to make materials that make our world a better place.

More Articles

View All
Why We Aren't Who We Are | The Tragedy Of Being What You Can't Define
“Trying to define yourself is like trying to bite your own teeth.” Alan Watts. In today’s society, we are expected to define who we are and take that self-image as a basis for making life decisions. For example: I’m an introvert, and from that point of vi…
TIL: You Might Be Related to Genghis Khan | Today I Learned
[Music] [Applause] [Music] So you probably heard of the name Genghis Khan or Jengus Khan, but you might not realize that something like one in 200 men in the world were genetically related to Genghis Khan. So he was obviously very, um, prolific. Yeah, bu…
I Make Boring Videos
Before diving into this video, I have a question: do I have your undivided attention? If you’re working or playing a game, I highly suggest you pause everything for the next 10 to 15 minutes and only listen to my words. You don’t have to, of course, but I…
How To Build Your Nest Egg In 2024
[Music] We will now meet ABC’s Shark Tank star Kevin O’Leary, chairman of O’Leary Ventures and Bean Stocks. Kevin, welcome to the show! Thank you very much. So, we’re going to be talking about nest eggs, and it’s so crazy—a statistic that I found. Accor…
The Team Leader Steps Down | Explorer
Hi. On a remote peak in Myanmar, a team of elite climbers is unraveling just as they are poised to attempt the summit. “But what I’m hearing from you guys is that you don’t trust me on the rope.” “We’re just worried about the safety of the team. There’l…
TIL: That's No Moon. It's Aliens. (Maybe.) | Today I Learned
Recently, there’s been a lot of excitement about this mysterious star and the K2 data from the Kepler space telescope. This star has a bizarre dip in the amount of light that reaches Earth. There is a chance that maybe the dip in the light is caused by an…